Cryptographic Engineering

An example of post-quantum crypto

Radboud University, Nijmegen, The Netherlands

24 Ny
C’Crre\?'

4/
O’HINe-?@

Spring 2015

Crypto today

Ephemeral ECDH on = 256-bit curve to compute shared key
Use EdDSA signatures for public-key authentication

Use AES-128 for encryption

Use HMAC-SHA256 for authentication

vV v v v

Crypto today

Ephemeral ECDH on = 256-bit curve to compute shared key
Use EdDSA signatures for public-key authentication

Use AES-128 for encryption

Use HMAC-SHA256 for authentication

vV v v v

Various alternatives . ..

> Traditional DH (in Zy)
» RSA signatures, DSA signatures

Crypto today

Ephemeral ECDH on = 256-bit curve to compute shared key
Use EdDSA signatures for public-key authentication

Use AES-128 for encryption

Use HMAC-SHA256 for authentication

vV v v v

Various alternatives . ..
> Traditional DH (in Zy)
» RSA signatures, DSA signatures
» Stream cipher, e.g., Salsa20
» Other authenticators, e.g., GHASH, Poly1305...

The end of crypto as we know it. ..

“In the past, people have said, maybe it's 50 years away, it's a dream,
maybe it’'ll happen sometime. | used to think it was 50. Now I'm
thinking like it's 15 or a little more. It's within reach. It's within our
lifetime. It's going to happen.”

—NMark Ketchen (IBM), Feb. 2012, about quantum computers

The end of crypto as we know it. ..

“In the past, people have said, maybe it's 50 years away, it's a dream,
maybe it’'ll happen sometime. | used to think it was 50. Now I'm
thinking like it's 15 or a little more. It's within reach. It's within our
lifetime. It's going to happen.”

—NMark Ketchen (IBM), Feb. 2012, about quantum computers

Quantum computers will

> break RSA (factoring),

The end of crypto as we know it. ..

“In the past, people have said, maybe it's 50 years away, it's a dream,
maybe it’'ll happen sometime. | used to think it was 50. Now I'm
thinking like it's 15 or a little more. It's within reach. It's within our
lifetime. It's going to happen.”

—NMark Ketchen (IBM), Feb. 2012, about quantum computers

Quantum computers will

» break RSA (factoring),
» break DH, DSA (discrete log),

The end of crypto as we know it. ..

“In the past, people have said, maybe it's 50 years away, it's a dream,
maybe it’'ll happen sometime. | used to think it was 50. Now I'm
thinking like it's 15 or a little more. It's within reach. It's within our
lifetime. It's going to happen.”

—NMark Ketchen (IBM), Feb. 2012, about quantum computers
Quantum computers will
» break RSA (factoring),

» break DH, DSA (discrete log),
» break ECC (ECDL),

The end of crypto as we know it. ..

“In the past, people have said, maybe it's 50 years away, it's a dream,
maybe it’'ll happen sometime. | used to think it was 50. Now I'm
thinking like it's 15 or a little more. It's within reach. It's within our
lifetime. It's going to happen.”

—NMark Ketchen (IBM), Feb. 2012, about quantum computers
Quantum computers will
» break RSA (factoring),
» break DH, DSA (discrete log),

» break ECC (ECDL),

> require doubling symmetric key sizes (e.g., use AES-256 instead of
AES-128),

The end of crypto as we know it. ..

“In the past, people have said, maybe it's 50 years away, it's a dream,
maybe it’'ll happen sometime. | used to think it was 50. Now I'm
thinking like it's 15 or a little more. It's within reach. It's within our
lifetime. It's going to happen.”

—NMark Ketchen (IBM), Feb. 2012, about quantum computers
Quantum computers will
» break RSA (factoring),
» break DH, DSA (discrete log),

» break ECC (ECDL),

> require doubling symmetric key sizes (e.g., use AES-256 instead of
AES-128),

» require doubling hash outputs to protect against preimage attacks.

Post-quantum crypto

» Asymmetric crypto that resists attacks by quantum computers
» Four main ideas for constructions:

Post-quantum crypto

» Asymmetric crypto that resists attacks by quantum computers
» Four main ideas for constructions:
> Code-based crypto: mainly encryption (e.g, McEliece)

Post-quantum crypto

» Asymmetric crypto that resists attacks by quantum computers
» Four main ideas for constructions:

> Code-based crypto: mainly encryption (e.g, McEliece)
> Lattice-based crypto: encryption (e.g., NTRU) and signatures

Post-quantum crypto

» Asymmetric crypto that resists attacks by quantum computers
» Four main ideas for constructions:

> Code-based crypto: mainly encryption (e.g, McEliece)
> Lattice-based crypto: encryption (e.g., NTRU) and signatures
» Multivariate crypto: encryption and signatures

Post-quantum crypto

» Asymmetric crypto that resists attacks by quantum computers
» Four main ideas for constructions:

v

Code-based crypto: mainly encryption (e.g, McEliece)
Lattice-based crypto: encryption (e.g., NTRU) and signatures
Multivariate crypto: encryption and signatures

Hash-based signatures: only signatures (e.g., XMSS)

vVYyy

Post-quantum crypto

v

Asymmetric crypto that resists attacks by quantum computers
Four main ideas for constructions:

v

v

Code-based crypto: mainly encryption (e.g, McEliece)
Lattice-based crypto: encryption (e.g., NTRU) and signatures
Multivariate crypto: encryption and signatures

Hash-based signatures: only signatures (e.g., XMSS)

vVYyy

v

Less efficient (in time or space), than ECC

v

For most of those: underlying problems not as well studied as, e.g.,
factoring or ECDLP

Even less studied: attacks by quantum computers

v

PQCRYPTO

» EU project to make post-quantum cryptography practical
» 11 partners from academia and industry

PQCRYPTO

» EU project to make post-quantum cryptography practical
» 11 partners from academia and industry

» 3 technical work packages:

» WP1: Post-quantum cryptography for small devices
» WP2: Post-quantum cryptography for the Internet
» WP3: Post-quantum cryptography for the cloud

PQCRYPTO

v

EU project to make post-quantum cryptography practical

v

11 partners from academia and industry

v

3 technical work packages:
» WP1: Post-quantum cryptography for small devices
» WP2: Post-quantum cryptography for the Internet
» WP3: Post-quantum cryptography for the cloud

v

For more information, see http://pqcrypto.eu/

http://pqcrypto.eu/

Hash-based signatures

» Security relies only on the security of cryptographic hash function

Hash-based signatures

» Security relies only on the security of cryptographic hash function

» Even if one hash function turns out to be insecure, can switch to
another one

Hash-based signatures

» Security relies only on the security of cryptographic hash function

» Even if one hash function turns out to be insecure, can switch to
another one

» If all hash functions are insecure, we're in bigger trouble anyway

Lamport signatures

> One-time signature (OTS) scheme proposed by Lamport in 1979.
» Use cryptographic hash function h with 256-bit output

Lamport signatures

> One-time signature (OTS) scheme proposed by Lamport in 1979.
» Use cryptographic hash function h with 256-bit output

» Key generation:
> Private key: (pseudo-)random

((50,0,50,1), (51,0, 51,1), (52,0, 82,1), - - -, (5255,0, $255,1)), each
si,; € {0,2%°% — 1}
» Public key:

((h(s0,0), P(80,1)), (M(51,0), A(51,1)); - - -5 (R(8255,0), h(s255,1)))

Lamport signatures

> One-time signature (OTS) scheme proposed by Lamport in 1979.
» Use cryptographic hash function h with 256-bit output
» Key generation:

> Private key: (pseudo-)random

((50,0,50,1), (51,0, 51,1), (52,0, 82,1), - - -, (5255,0, $255,1)), each
si,; € {0,2%°% — 1}
» Public key:

((h(s0,0); h(s0,1)), (h(s1,0), h(51,1)), - .., (h(s255,0), h(s255,1)))
» Signing:
> Sign messages (hashes) of 256 bits (mo, ..., mas5)
> Signature is (S0,mqs S1,mysS2,mas - - - 5 S255,ma55)

Lamport signatures

> One-time signature (OTS) scheme proposed by Lamport in 1979.
» Use cryptographic hash function h with 256-bit output

» Key generation:
> Private key: (pseudo-)random

((80,07 80,1)7 (?1,0, 81,1), (82,0, 82,1)7 ey (8255,0, 8255,1)), each
si,; € {0,2%°% — 1}
» Public key:
((h(s0,0); h(s0,1)), (h(s1,0), h(51,1)), - .., (h(s255,0), h(s255,1)))
» Signing:
> Sign messages (hashes) of 256 bits (mo, ..., mas5)
> Signature is (S0,mqs S1,mysS2,mas - - - 5 S255,ma55)
» Verification:

» Compare hashes of signature components to elements of the public
key

Lamport signatures

> One-time signature (OTS) scheme proposed by Lamport in 1979.
» Use cryptographic hash function h with 256-bit output
» Key generation:
> Private key: (pseudo-)random
((80,07 80,1)7 (591,0, 81,1), (82,0, 52,1)7 ey (8255,07 8255,1)), each
si,; € {0,2%°% — 1}
» Public key:
((h(s0,0), h(50.1)), (h(s1,0), h(51.1)), .-, (h(s255.0), h(s255.1)))
» Signing:
> Sign messages (hashes) of 256 bits (mo, ..., mas5)
> Signature is (S0,mqs S1,mysS2,mas - - - 5 S255,ma55)
» Verification:
» Compare hashes of signature components to elements of the public
key
» Secure only for a signature on one message

Lamport signatures

> One-time signature (OTS) scheme proposed by Lamport in 1979.
» Use cryptographic hash function h with 256-bit output

» Key generation:
> Private key: (pseudo-)random

((50,0,50,1), (51,0, 51,1), (52,0, 82,1), - - -, (5255,0, $255,1)), each
si,; € {0,2%°% — 1}
» Public key:

((h(s0,0), h(50.1)), (h(s1,0), h(51.1)), .-, (h(s255.0), h(s255.1)))
» Signing:
> Sign messages (hashes) of 256 bits (mo, ..., mas5)
> Signature is (S0,mqs S1,mysS2,mas - - - 5 S255,ma55)
» Verification:
» Compare hashes of signature components to elements of the public
key
» Secure only for a signature on one message

» 16 KB private and public key, 8 KB signature

Merkle Trees

» Merkle, 1979: Leverage one-time signatures to multiple messages
» Idea: Put a binary hash tree on top of all public keys:

> Leaves are hashes of public keys
» All other nodes are hashes of their two child nodes

[picture on the blackboard)]

Merkle Trees

» Merkle, 1979: Leverage one-time signatures to multiple messages
» Idea: Put a binary hash tree on top of all public keys:

> Leaves are hashes of public keys
» All other nodes are hashes of their two child nodes

» Maximal amount of messages to sign is fixed (number of leaves)

[picture on the blackboard)]

Merkle Trees

v

Merkle, 1979: Leverage one-time signatures to multiple messages

v

Idea: Put a binary hash tree on top of all public keys:

> Leaves are hashes of public keys
» All other nodes are hashes of their two child nodes

v

Maximal amount of messages to sign is fixed (number of leaves)
Public key is the root node of the tree (256 bits)

v

[picture on the blackboard)]

Merkle Trees

v

Merkle, 1979: Leverage one-time signatures to multiple messages

v

Idea: Put a binary hash tree on top of all public keys:

> Leaves are hashes of public keys
» All other nodes are hashes of their two child nodes

v

Maximal amount of messages to sign is fixed (number of leaves)
Public key is the root node of the tree (256 bits)
Signature is the one-time signature plus authentication path

v

v

[picture on the blackboard)]

A first analysis

Let's fix 232 signatures (=~ 4 Bio.)

Key generation needs to compute the whole tree (233 — 1 hashes)
Signing remembers the previous authentication path

Most of the time, need to compute only a few hashes for signing

A first analysis

Let's fix 232 signatures (=~ 4 Bio.)

Key generation needs to compute the whole tree (233 — 1 hashes)
Signing remembers the previous authentication path

Most of the time, need to compute only a few hashes for signing

vV v.v. v vy

Public-key size: 32 bytes

A first analysis

vV vV.v v v Y

Let's fix 232 signatures (=~ 4 Bio.)

Key generation needs to compute the whole tree (233 — 1 hashes)
Signing remembers the previous authentication path

Most of the time, need to compute only a few hashes for signing
Public-key size: 32 bytes

Secret-key: seed for the one-time-signature secret keys (e.g., 32
bytes)

A first analysis

vV vV.v v v Y

Let's fix 232 signatures (=~ 4 Bio.)

Key generation needs to compute the whole tree (233 — 1 hashes)
Signing remembers the previous authentication path

Most of the time, need to compute only a few hashes for signing
Public-key size: 32 bytes

Secret-key: seed for the one-time-signature secret keys (e.g., 32
bytes)
Signature size: ~ 25 KB

» 8 KB Lamport Signature

» 16 KB Lamport public key

» 32-32 = 1024 bytes authentication path

> 4 bytes for the index of the leaf node

A first analysis

vV vV.v v v Y

Let's fix 232 signatures (=~ 4 Bio.)

Key generation needs to compute the whole tree (233 — 1 hashes)
Signing remembers the previous authentication path

Most of the time, need to compute only a few hashes for signing
Public-key size: 32 bytes

Secret-key: seed for the one-time-signature secret keys (e.g., 32
bytes)

Signature size: ~ 25 KB

» 8 KB Lamport Signature

» 16 KB Lamport public key

» 32-32 = 1024 bytes authentication path
> 4 bytes for the index of the leaf node

Practical...?

A first analysis

vV vV.v v v Y

Let's fix 232 signatures (=~ 4 Bio.)

Key generation needs to compute the whole tree (233 — 1 hashes)
Signing remembers the previous authentication path

Most of the time, need to compute only a few hashes for signing
Public-key size: 32 bytes

Secret-key: seed for the one-time-signature secret keys (e.g., 32
bytes)

Signature size: ~ 25 KB

» 8 KB Lamport Signature

» 16 KB Lamport public key

» 32-32 = 1024 bytes authentication path
> 4 bytes for the index of the leaf node

Practical...?

» Sizes and speeds are not too bad
» Can even make signatures smaller (more later)

A first analysis

vV vV.v v v Y

Let's fix 232 signatures (=~ 4 Bio.)

Key generation needs to compute the whole tree (233 — 1 hashes)
Signing remembers the previous authentication path

Most of the time, need to compute only a few hashes for signing
Public-key size: 32 bytes

Secret-key: seed for the one-time-signature secret keys (e.g., 32
bytes)

Signature size: ~ 25 KB

» 8 KB Lamport Signature

» 16 KB Lamport public key

» 32-32 = 1024 bytes authentication path
> 4 bytes for the index of the leaf node

Practical...?

» Sizes and speeds are not too bad
» Can even make signatures smaller (more later)

A first analysis

vV vV.v v v Y

Let's fix 232 signatures (=~ 4 Bio.)

Key generation needs to compute the whole tree (233 — 1 hashes)
Signing remembers the previous authentication path

Most of the time, need to compute only a few hashes for signing
Public-key size: 32 bytes

Secret-key: seed for the one-time-signature secret keys (e.g., 32
bytes)

Signature size: ~ 25 KB

» 8 KB Lamport Signature

» 16 KB Lamport public key

» 32-32 = 1024 bytes authentication path
> 4 bytes for the index of the leaf node

Practical...?

» Sizes and speeds are not too bad
» Can even make signatures smaller (more later)
» We need to remember the state!

The state

» Remembering the state means updating the secret key after each
signing

10

The state

» Remembering the state means updating the secret key after each
signing
» This is not compatible with

» Backups
» Keys shared across devices
» Virtual-machine images

>..-

10

The state

» Remembering the state means updating the secret key after each
signing
» This is not compatible with

» Backups
» Keys shared across devices
» Virtual-machine images

> DEEEEY
» This is not even compatible with the definition of cryptographic

signatures

10

Goldreich's approach

» Goldreich, 1986: stateless hash-based signatures

» Idea: Use binary tree as in Merkle, but
> make the tree huge (e.g., height h = 256), such that one can pick
leaves at random;
> each node corresponds to an OTS key pair;
> leaf nodes are used to sign messages;
» non-leaf nodes are used to sign the hash of the public keys of the

two child nodes.

» All OTS secret keys are generated from a seed

12

Analysis of Goldreich’'s approach

> Public key and secret are still small (e.g., 32 bytes)
» Key generation is fast (only generate root OTS key pair)

13

Analysis of Goldreich's approach

> Public key and secret are still small (e.g., 32 bytes)

» Key generation is fast (only generate root OTS key pair)

» Signing requires 2h = 512 OTS key generations and h = 256 OTS
signatures

13

Analysis of Goldreich's approach

v

Public key and secret are still small (e.g., 32 bytes)

v

Key generation is fast (only generate root OTS key pair)

Signing requires 2h = 512 OTS key generations and h = 256 OTS
signatures

v

v

Signature becomes very large, for example with Lamport OTS:
» 256 - 24 KB for Lamport signatures and public keys
> 256 - 32bytes for authentication paths
» 32 bytes for the index of the leaf node

13

Analysis of Goldreich's approach

> Public key and secret are still small (e.g., 32 bytes)

» Key generation is fast (only generate root OTS key pair)

» Signing requires 2h = 512 OTS key generations and h = 256 OTS
signatures

» Signature becomes very large, for example with Lamport OTS:

» 256 - 24 KB for Lamport signatures and public keys
> 256 - 32bytes for authentication paths
» 32 bytes for the index of the leaf node

» Total size of 6 MB
» More efficient OTS helps, but still very large signatures

13

SPHINCS

» Bernstein, Hopwood, Hiilsing, Lange, Niederhagen,
Papachristodoulou, Schneider, Schwabe, and Wilcox-O'Hearn, 2015:

SPHINCS - Stateless, practical, hash-based, incredibly nice
cryptographic signatures

14

SPHINCS

14

A high-level view on SPHINCS

» Use a “hyper-tree” of total
height h

» Each tree has height h/d

» Inside the tree use Merkle
approach

» Between trees use Goldreich
approach

15

A high-level view on SPHINCS

Comes >
» Use a “hyper-tree” of total
neient I PN
Tomez >

» Each tree has height h/d

» Inside the tree use Merkle
approach

> Between trees use Goldreich

approach h/dI @
» Sign messages with a few-time

signature scheme Owo D
» Significantly reduce total tree
height logt
ST

15

A zoom into SPHINCS

v

v

v

v

We propose SPHINCS-256 for 128 bits of security
In the following, only consider (slightly simplified) SPHINCS-256:

>

Yy vy VY VY

12 trees of height 5 each

Use WOTS as one-time-signature scheme

Use HORST (HORS with tree) as few-time signature scheme

Fix n = 256 as bitlength of hashes in WOTS and HORST

Fix m = 512 as size of the message hash (BLAKE-512 hash function)
Use ChaChal2 as pseudorandom generator

SPHINCS-256 really uses WOTS™ instead of WOTS

Some more modifications required for security proofs

16

Deterministic, collision-resilient, signing

» Typical setup for stateless hash-based signatures (e.g., Goldreich):

> Obtain message M, compute h(M)
> Sign h(M) using random leaf from the tree

17

Deterministic, collision-resilient, signing

» Typical setup for stateless hash-based signatures (e.g., Goldreich):
> Obtain message M, compute h(M)
> Sign h(M) using random leaf from the tree

» Two disadvantages of this approach:

» Security requires collision resistance of H
» Security depends on randomness generator

17

Deterministic, collision-resilient, signing

» Typical setup for stateless hash-based signatures (e.g., Goldreich):
> Obtain message M, compute h(M)
> Sign h(M) using random leaf from the tree
» Two disadvantages of this approach:
» Security requires collision resistance of H
» Security depends on randomness generator
» Approach in SPHINCS:
> Include long-term secret SK> in private key
» Compute
= BLAKE-512(SK2||M) = (R1, R2) € {0,1}**% x {0,1}*°¢
» Sign D = BLAKE-512(R:||M); include R; in the signature
> Use last 60 bits of R2 to select a leaf

17

Deterministic, collision-resilient, signing

v

Typical setup for stateless hash-based signatures (e.g., Goldreich):

> Obtain message M, compute h(M)
> Sign h(M) using random leaf from the tree

v

Two disadvantages of this approach:

» Security requires collision resistance of H
» Security depends on randomness generator
Approach in SPHINCS:
> Include long-term secret SK> in private key
» Compute
= BLAKE-512(SK2||M) = (R1, R2) € {0,1}**% x {0,1}*°¢
» Sign D = BLAKE-512(R:||M); include R; in the signature
> Use last 60 bits of Ry to select a leaf

v

v

Additional advantage of this deterministic signing: easier testing

17

Deterministic, collision-resilient, signing

v

Typical setup for stateless hash-based signatures (e.g., Goldreich):

> Obtain message M, compute h(M)
> Sign h(M) using random leaf from the tree

v

Two disadvantages of this approach:

» Security requires collision resistance of H
» Security depends on randomness generator

Approach in SPHINCS:

> Include long-term secret SK> in private key
» Compute

= BLAKE-512(SK2||M) = (R1, R2) € {0,1}**% x {0,1}*°¢
» Sign D = BLAKE-512(R:||M); include R; in the signature
> Use last 60 bits of R2 to select a leaf

v

v

Additional advantage of this deterministic signing: easier testing

v

Similar trick in Ed25519 signatures (this is not specific to
hash-based signatures!)

17

HORST

> ldea in SPHINCS: use a few-time signature scheme to sign the
message digest

» HORST uses two parameters: k = 32 and t = 216
> Need that k - log, t equals the length of the message hash

18

HORST

> ldea in SPHINCS: use a few-time signature scheme to sign the
message digest

» HORST uses two parameters: k = 32 and t = 216
> Need that k - log, t equals the length of the message hash

» HORS(T) secret key: ¢ 256-bit pseudorandom values
(sko, ..., ski1)

18

HORST

»

Idea in SPHINCS: use a few-time signature scheme to sign the
message digest

HORST uses two parameters: k = 32 and t = 216
Need that & - log, t equals the length of the message hash

HORS(T) secret key: ¢ 256-bit pseudorandom values
(sko,. .., ski—1)
HORS public key: H(sko), ..., H(ski—1)

18

HORST

>

Idea in SPHINCS: use a few-time signature scheme to sign the
message digest

HORST uses two parameters: k = 32 and t = 216

Need that & - log, t equals the length of the message hash
HORS(T) secret key: ¢ 256-bit pseudorandom values
(sko,...,ski—1)

HORS public key: H(sko), ..., H(ski—1)

HORST public key: root of a Merkle tree on top of the HORS public
key

18

HORST

>

Idea in SPHINCS: use a few-time signature scheme to sign the
message digest

HORST uses two parameters: k = 32 and t = 216
Need that & - log, t equals the length of the message hash
HORS(T) secret key: ¢ 256-bit pseudorandom values
(sko,...,ski—1)
HORS public key: H(sko), ..., H(ski—1)
HORST public key: root of a Merkle tree on top of the HORS public
key
Signing;:
> Chop 512-bit message digest into k chunks (mo,...,mg_1)

18

HORST

>

Idea in SPHINCS: use a few-time signature scheme to sign the
message digest

HORST uses two parameters: k = 32 and t = 216
Need that & - log, t equals the length of the message hash
HORS(T) secret key: ¢ 256-bit pseudorandom values
(sko,...,ski—1)
HORS public key: H(sko), ..., H(ski—1)
HORST public key: root of a Merkle tree on top of the HORS public
key
Signing;:
> Chop 512-bit message digest into k chunks (mo,...,mg_1)
» Signature consists of k parts (skm,, Authy,,)

18

HORST

>

Idea in SPHINCS: use a few-time signature scheme to sign the
message digest

HORST uses two parameters: k = 32 and t = 216
Need that & - log, t equals the length of the message hash
HORS(T) secret key: ¢ 256-bit pseudorandom values
(sko,...,ski—1)
HORS public key: H(sko), ..., H(ski—1)
HORST public key: root of a Merkle tree on top of the HORS public
key
Signing;:
> Chop 512-bit message digest into k chunks (mo,...,mg_1)

» Signature consists of k parts (skm,, Authy,,)
> Auth,,, is the authentication path in the Merkle tree

18

HORST

>

Idea in SPHINCS: use a few-time signature scheme to sign the
message digest

HORST uses two parameters: k = 32 and t = 216
Need that & - log, t equals the length of the message hash
HORS(T) secret key: ¢ 256-bit pseudorandom values
(sko,...,ski—1)
HORS public key: H(sko), ..., H(ski—1)
HORST public key: root of a Merkle tree on top of the HORS public
key
Signing;:
» Chop 512-bit message digest into k chunks (mo,...,mg_1)

» Signature consists of k parts (skm,, Authy,;)
> Authy,, is the authentication path in the Merkle tree

Each signature reveals k = 32 out of 216 secret-key pieces
Can sign several times before an attacker has a good chance of
having enough pieces

18

Analysis of HORST

» Secret-key expansion needs to generate 2MB of key stream

19

Analysis of HORST

» Secret-key expansion needs to generate 2MB of key stream

» Going from the HORS secret key to the public key requires
n-bit-to-n-bit hashing

> In our case: 256-bit-to-256-bit hashing F’

19

Analysis of HORST

» Secret-key expansion needs to generate 2MB of key stream

» Going from the HORS secret key to the public key requires
n-bit-to-n-bit hashing

> In our case: 256-bit-to-256-bit hashing F’

» Going from HORS public key to HORST public key needs
2n-bit-to-n-bit hashing

> In our case: 512-bit-to-256-bit hashing H

19

Analysis of HORST

» Secret-key expansion needs to generate 2MB of key stream

» Going from the HORS secret key to the public key requires
n-bit-to-n-bit hashing

> In our case: 256-bit-to-256-bit hashing F’

» Going from HORS public key to HORST public key needs
2n-bit-to-n-bit hashing

> In our case: 512-bit-to-256-bit hashing H
» In total 26 = 65536 invocations of F'
» In total 216 — 1 = 65535 invocations of H

19

Analysis of HORST

Secret-key expansion needs to generate 2MB of key stream

Going from the HORS secret key to the public key requires
n-bit-to-n-bit hashing

> In our case: 256-bit-to-256-bit hashing F’

v

vV v v v

Going from HORS public key to HORST public key needs
2n-bit-to-n-bit hashing

In our case: 512-bit-to-256-bit hashing H
In total 216 = 65536 invocations of F
In total 216 — 1 = 65535 invocations of H

Note that F' and H are much more special than a general
cryptographic hash function (fixed input size!)

19

Analysis of HORST

Secret-key expansion needs to generate 2MB of key stream

Going from the HORS secret key to the public key requires
n-bit-to-n-bit hashing

> In our case: 256-bit-to-256-bit hashing F’

v

vV v v v

Going from HORS public key to HORST public key needs
2n-bit-to-n-bit hashing

In our case: 512-bit-to-256-bit hashing H

In total 2'6 = 65536 invocations of F

In total 2'6 — 1 = 65535 invocations of H

Note that F' and H are much more special than a general
cryptographic hash function (fixed input size!)

» Signing needs to compute 32 authentication paths

» Can compute the whole tree, extract required nodes

Can also use more memory-friendly algorithm, extract nodes on the
fly

19

WOTS

» WOTS stands for Winternitz one-time signatures
» Uses Winternitz parameter w; for SPHINCS-256: w = 16

20

WOTS

» WOTS stands for Winternitz one-time signatures
» Uses Winternitz parameter w; for SPHINCS-256: w = 16

» Derive values ¢; = [(n/log, w)] = 64 and
Uy = [(logy (41 (w —1)))/logow| +1=3; set £ = {1 + o

20

WOTS

>
>

>

v

v

WOTS stands for Winternitz one-time signatures

Uses Winternitz parameter w; for SPHINCS-256: w = 16

Derive values ¢1 = [(n/logy w)| = 64 and

Uy = [(logy (41 (w —1)))/logow| +1=3; set £ = {1 + o

Secret key: ¢ pseudorandom 256-bit values (sko, .

Public key: (F“~Y(sko),..., F¥ Y(ske_1)

.. ,Skgfl)

20

WOTS

WOTS stands for Winternitz one-time signatures

Uses Winternitz parameter w; for SPHINCS-256: w = 16

Derive values ¢1 = [(n/logy w)| = 64 and

Uy = [(logy (41 (w —1)))/logow| +1=3; set £ = {1 + o

Secret key: ¢ pseudorandom 256-bit values (sko, ..., ske_1)
Public key: (F“~Y(sko),..., F¥ Y(ske_1)

Signing of 256-bit message: chop into w-bit chunks (mg, ..., me 1)
Compute C = Zf:ol(w —1—my), write as (co, ..., Co—1)

Signature: o = (0p,...,00-1) =
(F™o(skg), ..., F™a=1(sks, _1), F(skg,), ..., F=1(sko_1))

20

WOTS

WOTS stands for Winternitz one-time signatures

Uses Winternitz parameter w; for SPHINCS-256: w = 16

Derive values ¢1 = [(n/logy w)| = 64 and

Uy = [(logy (41 (w —1)))/logow| +1=3; set £ = {1 + o

Secret key: ¢ pseudorandom 256-bit values (sko, ..., ske_1)
Public key: (F“~Y(sko),..., F¥ Y(ske_1)

Signing of 256-bit message: chop into w-bit chunks (mg, ..., me 1)
Compute C = Zf:ol(w —1—my), write as (co, ..., Co—1)

Signature: o = (0p,...,00-1) =
(F™o(skg), ..., F™a=1(sks, _1), F(skg,), ..., F=1(sko_1))

Verification: “Finish computing the hash chains”, compare to public
key

20

WOTS

WOTS stands for Winternitz one-time signatures

Uses Winternitz parameter w; for SPHINCS-256: w = 16

Derive values ¢1 = [(n/logy w)| = 64 and

Uy = [(logy (41 (w —1)))/logow| +1=3; set £ = {1 + o

Secret key: ¢ pseudorandom 256-bit values (sko, ..., ske_1)
Public key: (F“~Y(sko),..., F¥ Y(ske_1)

Signing of 256-bit message: chop into w-bit chunks (mg, ..., me 1)
Compute C = Zf:ol(w —1—m;), write as (co,...,Co—1)
Signature: o = (0g,...,00-1) =

(F™o(skg), ..., F™a=1(sks, _1), F(skg,), ..., F=1(sko_1))

Verification: “Finish computing the hash chains”, compare to public
key

Note: SPHINCS does not sign the hash of the public key, but the
root of an L-tree on top of the WOTS public key

An L-tree is a binary tree where nodes without siblings get promoted

20

Analysis of WOTS

» Crucial for SPHINCS performance: WOTS key generation
» 15-67 = 1005 invocations of F'

21

Analysis of WOTS

» Crucial for SPHINCS performance: WOTS key generation
» 15-67 = 1005 invocations of F'
» Computation of L-tree: 66 invocations of H

21

Analysis of WOTS

Crucial for SPHINCS performance: WOTS key generation
15 - 67 = 1005 invocations of F'

Computation of L-tree: 66 invocations of H

WOTS signature size: 32 67 = 2144 bytes

vV v v v

21

Hashing

» The performance of SPHINCS-256 is largely determined by
> n-bit-to-n-bit hashing (F'), and
> 2n-bit-to-n-bit hashing (H).

» Applying a full-fledged hash function would be overkill

22

Hashing

» The performance of SPHINCS-256 is largely determined by
> n-bit-to-n-bit hashing (F'), and
> 2n-bit-to-n-bit hashing (H).
» Applying a full-fledged hash function would be overkill
» Idea: use a fast permutation 7, compute
> F(My) = Chop(m(Mi]|C),256)
> H(M|[M2z) = Chop(m(m(M:]|C) & (M:][07)), 256)

22

Hashing

v

The performance of SPHINCS-256 is largely determined by
> n-bit-to-n-bit hashing (F'), and
> 2n-bit-to-n-bit hashing (H).

v

Applying a full-fledged hash function would be overkill

v

Idea: use a fast permutation 7, compute
> F(M;) = Chop(m(M:]|C), 256)
> H(M||Mz2) = Chop(r(m(M:]|C) & (M2]|07)), 256)

This is secure under certain assumptions about 7

v

22

Hashing

v

The performance of SPHINCS-256 is largely determined by
> n-bit-to-n-bit hashing (F'), and
> 2n-bit-to-n-bit hashing (H).

v

Applying a full-fledged hash function would be overkill

v

Idea: use a fast permutation 7, compute
> F(M;) = Chop(m(M:]|C), 256)
> H(M||Mz2) = Chop(r(m(M:]|C) & (M2]|07)), 256)

This is secure under certain assumptions about 7

v

v

Speed is obiously largely determined by speed of 7

22

The ChaCha permutation

» Consider b-bit permutation with c-bit capacity has
b — ¢ bits input and b — ¢ bits output

» We need (b —¢) > 256

23

The ChaCha permutation

v

Consider b-bit permutation with c-bit capacity has
b — ¢ bits input and b — ¢ bits output

We need (b — ¢) > 256

Keccak (SHA-3) permutation is extensively studied, but way too big
(b = 1600, ¢ = 512)

Instead, use ChaChal2 permutation b = 512, ¢ = 256

v

v

v

23

The ChaCha permutation

Consider b-bit permutation with c-bit capacity has
b — ¢ bits input and b — ¢ bits output

» We need (b —¢) > 256

v

vV v v v Y

Keccak (SHA-3) permutation is extensively studied, but way too big
(b = 1600, ¢ = 512)

Instead, use ChaChal2 permutation b = 512, ¢ = 256

ChaCha is an improvement of Salsa, both proposed by Bernstein
ChaChal2 uses 12 rounds to permute the 512-bit state
Operations are on 32-bit words

General structure is “add-rotate-xor” (ARX)

23

The ChaCha permutation

Consider b-bit permutation with c-bit capacity has
b — ¢ bits input and b — ¢ bits output

» We need (b —¢) > 256

v

vV V. v v v .Y

Keccak (SHA-3) permutation is extensively studied, but way too big
(b = 1600, ¢ = 512)

Instead, use ChaChal2 permutation b = 512, ¢ = 256

ChaCha is an improvement of Salsa, both proposed by Bernstein
ChaChal2 uses 12 rounds to permute the 512-bit state
Operations are on 32-bit words

General structure is “add-rotate-xor” (ARX)

The same permutation is used in Blake-512

23

SPHINCS-256 analysis
Overall computational cost of SPHINCS-256

» Two invocations of BLAKE-512 over the message together with
short random

24

SPHINCS-256 analysis
Overall computational cost of SPHINCS-256

» Two invocations of BLAKE-512 over the message together with
short random

» HORST signature:

> Generation of 2 MB of random stream with ChaChal2 (65536
Chachal2 permutations)

> 65536 invocations of F' (65536 ChaChal2 permutations)

> 65535 invocations of H (131070 ChaChal2 permutations)

24

SPHINCS-256 analysis
Overall computational cost of SPHINCS-256

» Two invocations of BLAKE-512 over the message together with
short random
» HORST signature:
> Generation of 2 MB of random stream with ChaChal2 (65536
Chachal2 permutations)
> 65536 invocations of F' (65536 ChaChal2 permutations)
> 65535 invocations of H (131070 ChaChal2 permutations)
» 12 WOTS authentication paths, each:
> 32-15- 67 = 32160 invocations of F' (32160 ChaChal2 perms.)
> 32-66 = 2112 evaluations of H in the L-tree (4224 ChaChal2
perms.)
> 31 evaluations of H for the binary hash tree (62 ChaChal2 perms.)

24

SPHINCS-256 analysis
Overall computational cost of SPHINCS-256

>

Two invocations of BLAKE-512 over the message together with
short random
HORST signature:
> Generation of 2 MB of random stream with ChaChal2 (65536
Chachal2 permutations)
> 65536 invocations of F' (65536 ChaChal2 permutations)
> 65535 invocations of H (131070 ChaChal2 permutations)
12 WOTS authentication paths, each:
> 32-15- 67 = 32160 invocations of F' (32160 ChaChal2 perms.)
> 32-66 = 2112 evaluations of H in the L-tree (4224 ChaChal2
perms.)
> 31 evaluations of H for the binary hash tree (62 ChaChal2 perms.)
Total cost:
65536 + 65536 + 131070 4 12 - (32160 + 4224 + 62) = 699494
ChaChal2 permutations

This ignores (neglible) cost for 12 WOTS signatures

24

Target architecture

Intel Haswell processors featuring AVX2
16 vector registers of length 256 bits each
Supports arithmetic on vector of integers

vV v v v

Particularly interesting: arithmetic on 8 x 32-bit integers

25

Parallelizing ChaCha permutation

» Operations inside ChaCha permutation are 4-way parallel
» Most BLAKE implementations use this parallelism to vectorize

26

Parallelizing ChaCha permutation

» Operations inside ChaCha permutation are 4-way parallel
» Most BLAKE implementations use this parallelism to vectorize

» Could obviously also use this here, but:

» We have 8-way parallel vectors in AVX2
> Internal vectorization removes instruction-level parallelism
» Needs frequent shuffling of vector entries

26

Parallelizing ChaCha permutation

v

Operations inside ChaCha permutation are 4-way parallel

v

Most BLAKE implementations use this parallelism to vectorize

v

Could obviously also use this here, but:
» We have 8-way parallel vectors in AVX2
> Internal vectorization removes instruction-level parallelism
» Needs frequent shuffling of vector entries

v

Much better: vectorize 8 independent computations of F' or H

26

Parallelizing ChaCha permutation

v

Operations inside ChaCha permutation are 4-way parallel

v

Most BLAKE implementations use this parallelism to vectorize

v

Could obviously also use this here, but:
» We have 8-way parallel vectors in AVX2
> Internal vectorization removes instruction-level parallelism
» Needs frequent shuffling of vector entries

v

Much better: vectorize 8 independent computations of F' or H

v

This requires interleaving 32-bit words in memory

26

Parallelizing ChaCha permutation

v

Operations inside ChaCha permutation are 4-way parallel

v

Most BLAKE implementations use this parallelism to vectorize

v

Could obviously also use this here, but:

» We have 8-way parallel vectors in AVX2
> Internal vectorization removes instruction-level parallelism
» Needs frequent shuffling of vector entries

Much better: vectorize 8 independent computations of F' or H
This requires interleaving 32-bit words in memory
8 way parallel computation of F: 420 Haswell cycles

vV v . v v

8 way parallel computation of H: 836 Haswell cycles

26

Parallelizing WOTS

» WOTS key generation computes 67 independent hashing chains
» Could vectorize across those, but 67 is not divisible by 8

27

Parallelizing WOTS

v

WOTS key generation computes 67 independent hashing chains

v

Could vectorize across those, but 67 is not divisible by 8

v

WOTS authentication-path computation computes 32 independent
WOTS keys

Efficiently vectorize those 32 independent key generations

v

v

Again, this requires interleaving of 32-bit words

27

Parallelizing WOTS

» WOTS key generation computes 67 independent hashing chains
» Could vectorize across those, but 67 is not divisible by 8

» WOTS authentication-path computation computes 32 independent
WOTS keys

» Efficiently vectorize those 32 independent key generations
» Again, this requires interleaving of 32-bit words
» Cost for WOTS signing is negligible; no need to vectorize

27

Parallelizing HORST

» Expanding the secret key: use fast vectorized ChaChal2 (by Andrew
Moon)

28

Parallelizing HORST

» Expanding the secret key: use fast vectorized ChaChal2 (by Andrew
Moon)

» Hashing from secret to HORS public key: 216 parallel hashes
» Obvious how to vectorize, again, needs interleaving

28

Parallelizing HORST

» Expanding the secret key: use fast vectorized ChaChal2 (by Andrew
Moon)

» Hashing from secret to HORS public key: 216 parallel hashes

» Obvious how to vectorize, again, needs interleaving

» Consider the tree as 8 independent trees with “small tree on top”

> Vectorize across those 8 independent trees

28

Parallelizing HORST

vV Vv vV v Vv .Yy

Expanding the secret key: use fast vectorized ChaChal2 (by Andrew
Moon)

Hashing from secret to HORS public key: 216 parallel hashes
Obvious how to vectorize, again, needs interleaving

Consider the tree as 8 independent trees with “small tree on top”
Vectorize across those 8 independent trees

Again, this needs interleaving

Can re-use the interleaving of the 2'¢ parallel hashes

Could even consider the output of ChaChal?2 as already interleaved
(but: compatibility issues)

28

Parallelizing HORST

vV Vv vV v Vv .Yy

Expanding the secret key: use fast vectorized ChaChal2 (by Andrew
Moon)

Hashing from secret to HORS public key: 216 parallel hashes
Obvious how to vectorize, again, needs interleaving

Consider the tree as 8 independent trees with “small tree on top”
Vectorize across those 8 independent trees

Again, this needs interleaving

Can re-use the interleaving of the 2'¢ parallel hashes

Could even consider the output of ChaChal?2 as already interleaved
(but: compatibility issues)
Handle the small tree on top non-vectorized (neglible)

28

Results

v

SPHINCS-256 is slightly more complex (random bitmasks all over
the place)

Results for full SPHINCS-256 on Intel Haswell (Xeon E3-1275):

» Keygen: 3237260 cycles
» Signing: 51636 372 cycles
» Verification: 1451004 cycles

Sizes for SPHINCS-256:
> Public Key: 1056 bytes

» Secret Key: 1088 bytes
» Signature: 41000 bytes

v

v

v

For more details see http://sphincs.cr.yp.to

29

http://sphincs.cr.yp.to

