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Ephemeral ECDH on = 256-bit curve to compute shared key
Use EdDSA signatures for public-key authentication

Use AES-128 for encryption

Use HMAC-SHA256 for authentication
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Various alternatives . ..
> Traditional DH (in Zy)
» RSA signatures, DSA signatures
» Stream cipher, e.g., Salsa20
» Other authenticators, e.g., GHASH, Poly1305...
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lifetime. It's going to happen.”

—NMark Ketchen (IBM), Feb. 2012, about quantum computers
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The end of crypto as we know it. ..

“In the past, people have said, maybe it's 50 years away, it's a dream,
maybe it’'ll happen sometime. | used to think it was 50. Now I'm
thinking like it's 15 or a little more. It's within reach. It's within our
lifetime. It's going to happen.”

—NMark Ketchen (IBM), Feb. 2012, about quantum computers
Quantum computers will
» break RSA (factoring),
» break DH, DSA (discrete log),

» break ECC (ECDL),

> require doubling symmetric key sizes (e.g., use AES-256 instead of
AES-128),

» require doubling hash outputs to protect against preimage attacks.
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Code-based crypto: mainly encryption (e.g, McEliece)
Lattice-based crypto: encryption (e.g., NTRU) and signatures
Multivariate crypto: encryption and signatures

Hash-based signatures: only signatures (e.g., XMSS)
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v

Less efficient (in time or space), than ECC

v

For most of those: underlying problems not as well studied as, e.g.,
factoring or ECDLP

Even less studied: attacks by quantum computers

v
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EU project to make post-quantum cryptography practical

v

11 partners from academia and industry

v

3 technical work packages:
» WP1: Post-quantum cryptography for small devices
» WP2: Post-quantum cryptography for the Internet
» WP3: Post-quantum cryptography for the cloud

v

For more information, see http://pqcrypto.eu/
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Hash-based signatures

» Security relies only on the security of cryptographic hash function

» Even if one hash function turns out to be insecure, can switch to
another one

» If all hash functions are insecure, we're in bigger trouble anyway
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Lamport signatures

> One-time signature (OTS) scheme proposed by Lamport in 1979.
» Use cryptographic hash function h with 256-bit output

» Key generation:
> Private key: (pseudo-)random

((50,0,50,1), (51,0, 51,1), (52,0, 82,1), - - -, (5255,0, $255,1)), each
si,; € {0,2%°% — 1}
» Public key:

((h(s0,0), h(50.1)), (h(s1,0), h(51.1)), .-, (h(s255.0), h(s255.1)))
» Signing:
> Sign messages (hashes) of 256 bits (mo, ..., mas5)
> Signature is (S0,mqs S1,mysS2,mas - - - 5 S255,ma55 )
» Verification:
» Compare hashes of signature components to elements of the public
key
» Secure only for a signature on one message

» 16 KB private and public key, 8 KB signature
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Merkle, 1979: Leverage one-time signatures to multiple messages

v

Idea: Put a binary hash tree on top of all public keys:

> Leaves are hashes of public keys
» All other nodes are hashes of their two child nodes

v

Maximal amount of messages to sign is fixed (number of leaves)
Public key is the root node of the tree (256 bits)
Signature is the one-time signature plus authentication path

v

v

[picture on the blackboard)]
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Let's fix 232 signatures (=~ 4 Bio.)

Key generation needs to compute the whole tree (233 — 1 hashes)
Signing remembers the previous authentication path

Most of the time, need to compute only a few hashes for signing
Public-key size: 32 bytes

Secret-key: seed for the one-time-signature secret keys (e.g., 32
bytes)

Signature size: ~ 25 KB

» 8 KB Lamport Signature

» 16 KB Lamport public key

» 32-32 = 1024 bytes authentication path
> 4 bytes for the index of the leaf node

Practical...?

» Sizes and speeds are not too bad
» Can even make signatures smaller (more later)
» We need to remember the state!
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The state

» Remembering the state means updating the secret key after each
signing
» This is not compatible with

» Backups
» Keys shared across devices
» Virtual-machine images

> DEEEEY
» This is not even compatible with the definition of cryptographic

signatures

10






Goldreich's approach

» Goldreich, 1986: stateless hash-based signatures

» Idea: Use binary tree as in Merkle, but
> make the tree huge (e.g., height h = 256), such that one can pick
leaves at random;
> each node corresponds to an OTS key pair;
> leaf nodes are used to sign messages;
» non-leaf nodes are used to sign the hash of the public keys of the

two child nodes.

» All OTS secret keys are generated from a seed

12
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Analysis of Goldreich's approach

> Public key and secret are still small (e.g., 32 bytes)

» Key generation is fast (only generate root OTS key pair)

» Signing requires 2h = 512 OTS key generations and h = 256 OTS
signatures

» Signature becomes very large, for example with Lamport OTS:

» 256 - 24 KB for Lamport signatures and public keys
> 256 - 32bytes for authentication paths
» 32 bytes for the index of the leaf node

» Total size of 6 MB
» More efficient OTS helps, but still very large signatures

13



SPHINCS

» Bernstein, Hopwood, Hiilsing, Lange, Niederhagen,
Papachristodoulou, Schneider, Schwabe, and Wilcox-O'Hearn, 2015:

SPHINCS - Stateless, practical, hash-based, incredibly nice
cryptographic signatures

14



SPHINCS
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A high-level view on SPHINCS

» Use a “hyper-tree” of total
height h

» Each tree has height h/d

» Inside the tree use Merkle
approach

» Between trees use Goldreich
approach
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A high-level view on SPHINCS

Comes >
» Use a “hyper-tree” of total
neient I PN
Tomez >

» Each tree has height h/d

» Inside the tree use Merkle
approach

> Between trees use Goldreich

approach h/dI @
» Sign messages with a few-time

signature scheme Owo D
» Significantly reduce total tree
height logt
ST
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A zoom into SPHINCS

v

v

v

v

We propose SPHINCS-256 for 128 bits of security
In the following, only consider (slightly simplified) SPHINCS-256:

>

Yy vy VY VY

12 trees of height 5 each

Use WOTS as one-time-signature scheme

Use HORST (HORS with tree) as few-time signature scheme

Fix n = 256 as bitlength of hashes in WOTS and HORST

Fix m = 512 as size of the message hash (BLAKE-512 hash function)
Use ChaChal2 as pseudorandom generator

SPHINCS-256 really uses WOTS™ instead of WOTS

Some more modifications required for security proofs

16
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» Security depends on randomness generator

Approach in SPHINCS:

> Include long-term secret SK> in private key
» Compute

= BLAKE-512(SK2||M) = (R1, R2) € {0,1}**% x {0,1}*°¢
» Sign D = BLAKE-512(R:||M); include R; in the signature
> Use last 60 bits of R2 to select a leaf

v

v

Additional advantage of this deterministic signing: easier testing

v

Similar trick in Ed25519 signatures (this is not specific to
hash-based signatures!)
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HORST

>

Idea in SPHINCS: use a few-time signature scheme to sign the
message digest

HORST uses two parameters: k = 32 and t = 216
Need that & - log, t equals the length of the message hash
HORS(T) secret key: ¢ 256-bit pseudorandom values
(sko,...,ski—1)
HORS public key: H(sko), ..., H(ski—1)
HORST public key: root of a Merkle tree on top of the HORS public
key
Signing;:
» Chop 512-bit message digest into k chunks (mo,...,mg_1)

» Signature consists of k parts (skm,, Authy,;)
> Authy,, is the authentication path in the Merkle tree

Each signature reveals k = 32 out of 216 secret-key pieces
Can sign several times before an attacker has a good chance of
having enough pieces
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Secret-key expansion needs to generate 2MB of key stream

Going from the HORS secret key to the public key requires
n-bit-to-n-bit hashing

> In our case: 256-bit-to-256-bit hashing F’
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Going from HORS public key to HORST public key needs
2n-bit-to-n-bit hashing
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In total 216 — 1 = 65535 invocations of H

Note that F' and H are much more special than a general
cryptographic hash function (fixed input size!)
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Going from HORS public key to HORST public key needs
2n-bit-to-n-bit hashing

In our case: 512-bit-to-256-bit hashing H

In total 2'6 = 65536 invocations of F

In total 2'6 — 1 = 65535 invocations of H

Note that F' and H are much more special than a general
cryptographic hash function (fixed input size!)

» Signing needs to compute 32 authentication paths

» Can compute the whole tree, extract required nodes

Can also use more memory-friendly algorithm, extract nodes on the
fly
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WOTS

» WOTS stands for Winternitz one-time signatures
» Uses Winternitz parameter w; for SPHINCS-256: w = 16
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WOTS stands for Winternitz one-time signatures

Uses Winternitz parameter w; for SPHINCS-256: w = 16

Derive values ¢1 = [(n/logy w)| = 64 and
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Secret key: ¢ pseudorandom 256-bit values (sko, .
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Verification: “Finish computing the hash chains”, compare to public
key
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WOTS stands for Winternitz one-time signatures

Uses Winternitz parameter w; for SPHINCS-256: w = 16

Derive values ¢1 = [(n/logy w)| = 64 and

Uy = [(logy (41 (w —1)))/logow| +1=3; set £ = {1 + o

Secret key: ¢ pseudorandom 256-bit values (sko, ..., ske_1)
Public key: (F“~Y(sko),..., F¥ Y(ske_1)

Signing of 256-bit message: chop into w-bit chunks (mg, ..., me 1)
Compute C = Zf:ol(w —1—m;), write as (co,...,Co—1)
Signature: o = (0g,...,00-1) =

(F™o(skg), ..., F™a=1(sks, _1), F(skg,), ..., F=1(sko_1))

Verification: “Finish computing the hash chains”, compare to public
key

Note: SPHINCS does not sign the hash of the public key, but the
root of an L-tree on top of the WOTS public key

An L-tree is a binary tree where nodes without siblings get promoted
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Analysis of WOTS

» Crucial for SPHINCS performance: WOTS key generation
» 15-67 = 1005 invocations of F'
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Analysis of WOTS

Crucial for SPHINCS performance: WOTS key generation
15 - 67 = 1005 invocations of F'

Computation of L-tree: 66 invocations of H

WOTS signature size: 32 67 = 2144 bytes

vV v v v
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Hashing

» The performance of SPHINCS-256 is largely determined by
> n-bit-to-n-bit hashing (F'), and
> 2n-bit-to-n-bit hashing (H).

» Applying a full-fledged hash function would be overkill
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The performance of SPHINCS-256 is largely determined by
> n-bit-to-n-bit hashing (F'), and
> 2n-bit-to-n-bit hashing (H).
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Applying a full-fledged hash function would be overkill

v

Idea: use a fast permutation 7, compute
> F(M;) = Chop(m(M:]|C), 256)
> H(M||Mz2) = Chop(r(m(M:]|C) & (M2]|07)), 256)

This is secure under certain assumptions about 7

v
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Hashing

v

The performance of SPHINCS-256 is largely determined by
> n-bit-to-n-bit hashing (F'), and
> 2n-bit-to-n-bit hashing (H).

v

Applying a full-fledged hash function would be overkill

v

Idea: use a fast permutation 7, compute
> F(M;) = Chop(m(M:]|C), 256)
> H(M||Mz2) = Chop(r(m(M:]|C) & (M2]|07)), 256)

This is secure under certain assumptions about 7

v

v

Speed is obiously largely determined by speed of 7
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The ChaCha permutation

» Consider b-bit permutation with c-bit capacity has
b — ¢ bits input and b — ¢ bits output

» We need (b —¢) > 256
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Keccak (SHA-3) permutation is extensively studied, but way too big
(b = 1600, ¢ = 512)

Instead, use ChaChal2 permutation b = 512, ¢ = 256

ChaCha is an improvement of Salsa, both proposed by Bernstein
ChaChal2 uses 12 rounds to permute the 512-bit state
Operations are on 32-bit words

General structure is “add-rotate-xor” (ARX)
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The ChaCha permutation

Consider b-bit permutation with c-bit capacity has
b — ¢ bits input and b — ¢ bits output

» We need (b —¢) > 256

v

vV V. v v v .Y

Keccak (SHA-3) permutation is extensively studied, but way too big
(b = 1600, ¢ = 512)

Instead, use ChaChal2 permutation b = 512, ¢ = 256

ChaCha is an improvement of Salsa, both proposed by Bernstein
ChaChal2 uses 12 rounds to permute the 512-bit state
Operations are on 32-bit words

General structure is “add-rotate-xor” (ARX)

The same permutation is used in Blake-512
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SPHINCS-256 analysis
Overall computational cost of SPHINCS-256

» Two invocations of BLAKE-512 over the message together with
short random
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short random
» HORST signature:
> Generation of 2 MB of random stream with ChaChal2 (65536
Chachal2 permutations)
> 65536 invocations of F' (65536 ChaChal2 permutations)
> 65535 invocations of H (131070 ChaChal2 permutations)
» 12 WOTS authentication paths, each:
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SPHINCS-256 analysis
Overall computational cost of SPHINCS-256

>

Two invocations of BLAKE-512 over the message together with
short random
HORST signature:
> Generation of 2 MB of random stream with ChaChal2 (65536
Chachal2 permutations)
> 65536 invocations of F' (65536 ChaChal2 permutations)
> 65535 invocations of H (131070 ChaChal2 permutations)
12 WOTS authentication paths, each:
> 32-15- 67 = 32160 invocations of F' (32160 ChaChal2 perms.)
> 32-66 = 2112 evaluations of H in the L-tree (4224 ChaChal2
perms.)
> 31 evaluations of H for the binary hash tree (62 ChaChal2 perms.)
Total cost:
65536 + 65536 + 131070 4 12 - (32160 + 4224 + 62) = 699494
ChaChal2 permutations

This ignores (neglible) cost for 12 WOTS signatures
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Target architecture

Intel Haswell processors featuring AVX2
16 vector registers of length 256 bits each
Supports arithmetic on vector of integers

vV v v v

Particularly interesting: arithmetic on 8 x 32-bit integers
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Parallelizing ChaCha permutation

» Operations inside ChaCha permutation are 4-way parallel
» Most BLAKE implementations use this parallelism to vectorize
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Parallelizing ChaCha permutation

v

Operations inside ChaCha permutation are 4-way parallel

v

Most BLAKE implementations use this parallelism to vectorize

v

Could obviously also use this here, but:

» We have 8-way parallel vectors in AVX2
> Internal vectorization removes instruction-level parallelism
» Needs frequent shuffling of vector entries

Much better: vectorize 8 independent computations of F' or H
This requires interleaving 32-bit words in memory
8 way parallel computation of F: 420 Haswell cycles

vV v . v v

8 way parallel computation of H: 836 Haswell cycles
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Parallelizing WOTS

» WOTS key generation computes 67 independent hashing chains
» Could vectorize across those, but 67 is not divisible by 8
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WOTS keys
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v

v

Again, this requires interleaving of 32-bit words

27



Parallelizing WOTS

» WOTS key generation computes 67 independent hashing chains
» Could vectorize across those, but 67 is not divisible by 8

» WOTS authentication-path computation computes 32 independent
WOTS keys

» Efficiently vectorize those 32 independent key generations
» Again, this requires interleaving of 32-bit words
» Cost for WOTS signing is negligible; no need to vectorize
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Parallelizing HORST

» Expanding the secret key: use fast vectorized ChaChal2 (by Andrew
Moon)
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» Expanding the secret key: use fast vectorized ChaChal2 (by Andrew
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» Hashing from secret to HORS public key: 216 parallel hashes

» Obvious how to vectorize, again, needs interleaving

» Consider the tree as 8 independent trees with “small tree on top”

> Vectorize across those 8 independent trees
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Expanding the secret key: use fast vectorized ChaChal2 (by Andrew
Moon)

Hashing from secret to HORS public key: 216 parallel hashes
Obvious how to vectorize, again, needs interleaving

Consider the tree as 8 independent trees with “small tree on top”
Vectorize across those 8 independent trees

Again, this needs interleaving

Can re-use the interleaving of the 2'¢ parallel hashes

Could even consider the output of ChaChal?2 as already interleaved
(but: compatibility issues)
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Parallelizing HORST

vV Vv vV v Vv .Yy

Expanding the secret key: use fast vectorized ChaChal2 (by Andrew
Moon)

Hashing from secret to HORS public key: 216 parallel hashes
Obvious how to vectorize, again, needs interleaving

Consider the tree as 8 independent trees with “small tree on top”
Vectorize across those 8 independent trees

Again, this needs interleaving

Can re-use the interleaving of the 2'¢ parallel hashes

Could even consider the output of ChaChal?2 as already interleaved
(but: compatibility issues)
Handle the small tree on top non-vectorized (neglible)
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Results

v

SPHINCS-256 is slightly more complex (random bitmasks all over
the place)

Results for full SPHINCS-256 on Intel Haswell (Xeon E3-1275):

» Keygen: 3237260 cycles
» Signing: 51636 372 cycles
» Verification: 1451004 cycles

Sizes for SPHINCS-256:
> Public Key: 1056 bytes

» Secret Key: 1088 bytes
» Signature: 41000 bytes

v

v

v

For more details see http://sphincs.cr.yp.to
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